Age-Related Changes in Electroencephalographic Signal Complexity
نویسندگان
چکیده
The study of active and healthy aging is a primary focus for social and neuroscientific communities. Here, we move a step forward in assessing electrophysiological neuronal activity changes in the brain with healthy aging. To this end, electroencephalographic (EEG) resting state activity was acquired in 40 healthy subjects (age 16-85). We evaluated Fractal Dimension (FD) according to the Higuchi algorithm, a measure which quantifies the presence of statistical similarity at different scales in temporal fluctuations of EEG signals. Our results showed that FD increases from age twenty to age fifty and then decreases. The curve that best fits the changes in FD values across age over the whole sample is a parabola, with the vertex located around age fifty. Moreover, FD changes are site specific, with interhemispheric FD asymmetry being pronounced in elderly individuals in the frontal and central regions. The present results indicate that fractal dimension well describes the modulations of brain activity with age. Since fractal dimension has been proposed to be related to the complexity of the signal dynamics, our data demonstrate that the complexity of neuronal electric activity changes across the life span of an individual, with a steady increase during young adulthood and a decrease in the elderly population.
منابع مشابه
Brain complexity increases during the manic episode of bipolar mood disorder type I
Fractal dimension of the electroencephalographic (EEG) signal has been argued to reflect the complexity of the underlying brain processes. To this date, conventional studies of EEG in mood disorders have not been able to distinguish between patients and normal individuals. Here we show that, compared to normal subjects, EEG fractal dimension is significantly augmented in the manic episode of bi...
متن کاملBrain complexity increases during the manic episode of bipolar mood disorder type I
Fractal dimension of the electroencephalographic (EEG) signal has been argued to reflect the complexity of the underlying brain processes. To this date, conventional studies of EEG in mood disorders have not been able to distinguish between patients and normal individuals. Here we show that, compared to normal subjects, EEG fractal dimension is significantly augmented in the manic episode of bi...
متن کاملA New Approach for Investigating the Complexity of Short Term EEG Signal Based on Neural Network
Background and purpose: The nonlinear quality of electroencephalography (EEG), like other irregular signals, can be quantified. Some of these values, such as Lyapunovchr('39')s representative, study the signal path divergence and some quantifiers need to reconstruct the signal path but some do not. However, all of these quantifiers require a long signal to quantify the signal complexity. Mate...
متن کاملQuantification the Effect of Ageing on Characteristics of the Photoplethysmogram Using an Optimized Windkessel Model
Background: With increasing age, some changes appeared in specifications of vessels which including dimensions and elasticity in their. The changes in parameters such as resistance, inertance and compliance vessels appear and eventually changes in the environmental pulse releases are in circulation. These changes clearly appear in specification of photoplethysmogram particularly in the size and...
متن کاملBrain Signal Complexity and Creative Ability in Bilingual and Monolingual Children
Childhood bilingualism has long been associated with enhanced creative performance. The neural mechanisms underlying this phenomenon, however, have yet to be characterized. Research suggests bilingualism modifies neural networks for executive control. Such changes, which can be assessed with estimation of neural signal complexity, are thought to increase information processing capacity. We thus...
متن کامل